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Formulas for Factorial N 

By Francis J. Murray 

Abstract. Bumside's and Stirling's formulas for factorial N are special cases of a family of 
formulas with corresponding asymptotic series given by E. W. Barnes in 1899. An operational 
procedure for obtaining these formulas and series is presented which yields both convergent 
and divergent series and error estimates in the latter case. Two formulas of this family have 
superior accuracy and the geometric mean is better than either. 

1. Introduction. Burnside's formula for N! is given by 

(1) b(N) = (27T ). ((N + .5)/e)N.5 

(1) has a number of advantages relative to the usual Stirling formula 

(2) s(N) = (277 e)5(N/e)N+5. 

Thus if Eb(N) and Es(N) are defined by the equations 

(3) b(N)/N!= 1 + Eb(N): s(N)/N! = - Es(N), 

then for N = 1, 2,..., both Eb(N) and Es(N) are positive and, practically, Es(N) 
= 2Eb(N). One can take logarithms of b(N) for N = 0, 1,..., and, indeed, 
Eb(0) = .07. 

The computational value of these formulas is based on the associated asymptotic 
series. The asymptotic series for both b(N) and s(N) are special cases of a family of 
asymptotic series for N!. The classical textbook procedure for obtaining s(N) is 
based on Euler-Maclaurin summation. For example, in [5] one has a development 
explicitly based on the properties of the Bernoulli functions. An alternate procedure 
is presented here, using "operational" methods which produce both convergent and 
divergent series and error estimates in the latter case. The family of asymptotic series 
is known. Thus Eq. (28) of this paper is related to Eq. 12, p. 48 of [2], by an obvious 
change of independent variables and an explicit formula for the remainder term. 
Equation 12 of [2] is ascribed to E. W. Barnes. Burnside [1], showed that log b(N) is 
the initial term of a convergent series for log(N!) and Wilton [6], generalized 
Burnside's result to nonintegral values. 

The formulas s(N) and b(N) avoid certain difficulties which are associated with 
the iterative computation of N!, when their accuracy is adequate. There are, 
however, two formulas, corresponding to members of the above-mentioned family of 
series, which have superior accuracy, and the geometrical mean is even better. In 
each of these five formulas only one logarithm and antilogarithm is computed. 
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The present paper has been revised in accordance with recommendations of the 
referee. 

2. Convergent Series for Factorial N. The Burnside series can be derived as 
follows. Let 

(4) f(x) = x log IXI -x. 

For positive integral values of k, considerf(k + h) as a Taylor series at k for h .5 
and h = -.5. Taking the difference yields 

00 

(5) f(k + .5) - f(k - .5)= log k - E 1/2j(2j]+ 1)(2k)2j. 
j=1 

Define D by the equation 
00 00 

(6) E, Il/k 2 E, I/(k +N + 1) 2j= D(2j, N+ 1). 
k=N+1 k=O 

To obtain an expression for log N!, (5) can be summed from 2 to N. 
00 

(7) f(N + .5)-f(1.5) = log N!- E ('(2j, 2)- (2j, N + 1))/2j(2j + 1)221. 
j=1 

Combining the terms independent of N into a constant c yields 
00 

(8) log N! f(N + .5) + c - E t(2j, N + 1)/2j(2j + 1)221. 
J=1 

The values of the D function which appear can be estimated by the usual integral 
test. Thus the convergence and characteristics of the series in the last expression in 
(8) are readily obtained. Since this expression approaches zero as N -x 0, a 
comparison with Stirling's formula shows that c = .5 log(277). With this value of c, 
(8) becomes the Burnside series. 

The D functions in (8) appear quite formidable in regard to computation, although 
they really are not. Cf. [2, Section 1.10, p. 24]. Also the Stirling asymptotic series for 
log N! has terms consisting of negative powers of N with relatively small rational 
coefficients. It would clearly be desirable to have a similar series with negative 
powers of N + .5. 

Consider then the difference equation 

(9) b (x + .5) - b(x -.5) =log x. 

A solution, b(x), of this equation, defined for x > 1.5 will yield an expression for 
log N! 

(10) log N! = b(N + .5) + c 

by summing (9) for x = 2,. . .,N. 
We obtain a solution of (9) by "operational methods." We proceed formally and 

return to a justification later. In terms of the differential operator, D, (9) can be 
written 

(11) (exp(.SD) - exp(-.SD))b(x) = log x. 

Integration is equivalent to dividing by D, i.e., 

(12) (2 sinh(.SD)/D)b(x) = f(x) + A, 
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where A is a constant of integration. The operator on the left, when applied to a 
constant, yields the constant. Thus the constant A can be incorporated into b(x). 
Then 

(13) b(x)= (.5D/sinh(.5D))f(x). 

Let z denote a complex variable. The expansion of the meromorphic function csc z 
in terms of its poles yields (see [3, p. 463]) 

00 

(14) z/sin z 1 + E (-1)n2z2/ (Z2 - 27T2) 
n= 1 

Substituting z = .5ix yields 
00 

(15) .5x/sinh.5x =1 ?+ (-_)n2x2/ (x2 + 4n 22). 
n= 1 

For x = D, using (15) in (13) yields 
00 

(16) b(x) = f(x) + E(_)nyn(X), 
n= 1 

where 

(17) (D2 + 4n27T2)yn(x) 2D2f(x) = 2/x. 

For positive x, variation of parameters yields a solution of (17) which goes to zero 
as x goes to infinity, i.e., 

(18) yn(x) = (1/7n)f (/t)sin(27Tn(t - x)) dt. 

By changing the variable of integration this can also be expressed as 

(19) yn(x) = (1/n)f (sin u/ (u + 2,gnx)) du. 

Since any two distinct solutions of (17) must differ by a harmonic oscillation of 
nonzero amplitude, (19) is the only solution of (17) which goes to zero as x goes to 
plus infinity. 

Now one can readily show that for a 0 0 

00 J(sin ul(u +a)) du 

(20) 19 l? 
=f sinu| E 7T/(2k7T+u+a)((2k+ 1)7T+u+a) du, 

0 k=0 

and consequently, for x 0 0, yn(x) : 0 and for each x, yn(x) decreases as n increases, 
and, for each n, yn(x) is a monotonically decreasing function of x for x ? 0. Thus 
the summation in (16) is for each x an alternating series of decreasing terms, and, 
indeed, one has uniform convergence for x ? 0. Since the summation in (16) 
approaches zero as x -x o, comparison with Stirling's formula shows that the 
constant c in (10) has value .5 log 2 . 

3. The Asymptotic Series. The series (16) for b(x) with terms given by (19) does 
not satisfy our requirement for a series in negative integral powers of N + .5. We 
proceed to obtain an asymptotic series of this type with a remainder estimate. 
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Repeated integration by parts yields 
k 

yn(x) = (l/ng) E (-I)j'1(2j - 2)!/ (2Tnx)2j 1 

(21) 
= 

? (-l)k(2k)! (In7T)f (sin u/(2 7nx +u)2k?l) du 

and 
oo k 

(22) E (-1)nyn(x) = aj(2j - 2)!/x2j I+ R(k, x), 
n= j= 

where 

(23) R(k, x)= (l)k(2k)! z (_1) (I/n7)f (sin u/ (2Tnx + u)2k+?) du 

and 

(24) a = 2(-1)'+l E(_)n/(2 Tn)2j. 
n = 

But aj can also be evaluated as follows. The function 

(25) .5x/sinh.5x = 1/ (I + (.5x )2/3! + (.5x )4/5! + ) 

is analytic at x = 0 and has a Taylor expansion 
00 

(26) 1?+ E cjx2j 
j=l 

valid for I x I < 2 T, with rational cjs which are readily evaluated. But the left-hand 
side of (25) is also given in (15). Now, if we factor out 4n27T2 in the denominator of 
the terms in (15), we can express the function as a power series in x/27Tn and obtain 
ultimately 

00 00 

(27) .5x/sinh.5x =1 + 2 E (-i)J( +1E (_1)7/ (2 7n )2 x2j 

J= n=lI 

for Ix <2 r. Comparing with (26) shows that a =Cj. However, we also have 
D2jf(x) = (2j - 2)!/x2j-', so that (16) and (22) yield 

k 

(28) b(x) = f(x) ? E c D2jf(x) + R(k, x). 
J~ J=1 

If, in (28), we ignore the remainder term and let k = x, we obtain an expression 
which corresponds to using (26) as the function of D in (13). This is, of course, a 
most naive way to solve (11) and yields a divergent series. On the other hand, the 
properties of R(k, x) yield very useful results since the cj can be readily calculated. 

The argument, in the paragraph containing (20), is based simply on the fact that 
sin(u + g) = -sin u and readily generalizes to yield properties of the summation in 
(23) in place of the summation in (16). In particular, the summation in (23) is always 
negative, and for k fixed this summation approaches zero as x -x oc. Hence the f(x) 
terms in (28) yield an asymptotic expression for b(x), and R(k, x) has the sign 
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(_l)kll. Hence, if one adds a term to the asymptotic expression, the remainder 
changes sign, i.e., each term overshoots and must be larger than the previous 
remainder. These are, of course, computationally desirable properties of the asymp- 
totic expression. 

4. On Justifying the Formal Procedure. We now return to justifying the formal 
procedure of Section 2. This can be done by using the Fourier transform to express 
the operator D on generalized functions, that is, using the methods described in [4]. 
However, to justify our procedure it is only necessary to show that (9) holds for 
x = 2, 3,. .. for b given by (16) and (19). We now show that (9) holds for x > .5. 

By making the change of variable u= 27Tnv and manipulating the limits of 
integration, we obtain 

(29) Yn( x + .S)-Yn(x x-.5) = ((-_I)n + 
In ) | (sin 2 nul ( u + x )) du. 

To make the required summation in (16), we consider 

00 

h(u) =- E sin 2Tnu/n = Imlog(1 - exp(27Tiu)) 

(30) n= I 
= Im(log(2 sin STu) + log(sin Tu - i cos STu)) 

= .5(1 -sign u>)T+ 7T(u-2) 

using half angle formulas. Using this summation formula one obtains 

co 

E (-1) (yn(X + .5) -yn(x - .5)) 

(31) 
n= 

= 1 + log x + (x-.5)log(x-.5)-(x + .5)log(x + .5), 

which implies (9). 
The Fourier transform approach requires that yn(x) be defined for negative x. If 

one considers integration across a simple pole, as given by the Cauchy limit, then 
(19) yields that for x < 0 

(32) yn(x) = cos(2 gnx)/n -yn((x). 

The summation argument of (30) then yields for x < 0 

(33) b(x) = -log(2 I cos TX 1) - b(I x 1). 

5. The Family of Asymptotic Series. The equations (10), (28) and the evaluation of 
the constant c at the end of Section 2 yield the asymptotic series for log N! 

log N! = f(N + .5) + .5 log(27T) - 1/24(N + .5) 

+7/K3(N + .5)3 - 31/K5(N + .5)5 + 127/K7(N + .5)7 - 

where K3 26 X 32 X5=2880,K = 7X 2 X 5 X 7 = 40320, and K7 = 21 X 3 
X 5 X 7 = 215040. 

The argument used above will also yield other asymptotic series. For example, if 
we replace (9) by 

(35) s(x) - s(x - 1) = log x, 
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the equivalent of (25) is 

(36) x/ (1 - exp(-x)) = 1/ (1 - x/2! +x2/3!- ), 

and the equivalent of (34) is 

(37) log N! = f(N) + .5 log N + .5 log 2v ? 1/12N - 1/360N2 + 

which is the usual Stirling series for log N!. 
In general, we can replace (9) by 

(38) g(x + .5 + (a)-g(x-.5 + a) = log x. 

One expands the function exp(-ax)/2 sinh .5x - I/x + a in terms of its poles, and 
one obtains, corresponding to (15) in the previous argument, 

x exp(-ax)/2 sinh .5x 

(39) ~~~~~~~00 (II2(2+ )) (39) -=1 - ax + 2 2 (-1)nx2(cos2hna - xsin27Tna/27Tn)/ (x2 ? (mn)2). 
n=1I 

To obtain the equivalent to (16), we use both yn, defined by (19), and 

(40) z, = -Dyn/27Tn = (1/Tn) f(cos u/ (u + 2,Tnx)) du. 

The equivalent of (16) is then 
00 

(41) g(x) = f(x) - a log x + (-1)n(yn cos(2,Tn a) + Zn sin(2,Tn a)). 
n= I 

A rather obvious modification of the argument associated with Eqs. (29) and (30) 

shows that (41) satisfies (38). 
The Taylor expansion corresponding to (26) is 

x exp(-ax)/2 sinh .5x 

1 - ax + 2(a2 - I 
)X2 + (a/6)(.25 - a2)X3 

(42) + (1/24)((a2 .25)2 _ 1/30)x4 

- (a/120)((a2 - 5/12)2 - 1/36)x5 + 

which yields the asymptotic series for log N ! 

logN!=f(N+ .5+a)- alog(N+ .5+a)+ .5log2 T 

? .5(a2 - 1/12)/ (N + .5 + a) - a(.25 - a2)/6(N + .5 + a()2 
(43) 

+ ((a2 - .25)2 - 1/30)/12(N + .5 + a()3 

+a((a2 
- 5/12) -1/36)/20(N + .5 + a)4 ? 

The asymptotic character and the remainder of (43) is readily obtained by the 

methods used after (28) above, but the effect of the remainder is more complicated 
and depends on a. 

6. The Formulas. Define for -.5 < a < .5 

(44) M(N, a) = (N + .5)log(N + .5 + ?a)-(N + .5 + a) + .5log2 7, 

so that log N! = M(N, a) + o(l) as N -o a. For fixed N, M has a maximum at a = 0 

and a minimum at the lower extreme point. If M(N, ao) is used as an approximation 
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for log N!, then by (43) the error is 0(1/N) for large N except for a = (1/12)'/2, 
where the error is essentially -a/36(N + .5 + a)2. 

We define the a formula for N! as ba(N) = exp(M(N, a)). We have bo(N) = b(N), 
b_ 5(N) = s(N). Referring to Eq. (3), we have for large N 

(45) Eb(N) 1/24(N + .5); Es(N) - 1/12N. 

In general 

(46) bo(N) (2,g)S-a((N + .5 + a)le)N+ S 

Let d (1/12) . If Ed(N) is defined by 

(47) ba(N)/N! -1 + Ed(N), 

then for large N, Ed(N) - d/36(N + .5 + d)2. For a = -d the error has the 
opposite sign and is larger. 

The geometric mean of ba and b-a is given by 

(48) gm(N) = (bdb-d )-5 _ (2mT).5(((N + .5)2 _ I/12) e2)5N?25 

If gm(N)/N! 1 - Eg(N), then for large N 

(49) Eg(N) - 1/240(N + .5)3. 

Table of Fractional Errors 

N N! Es Eb Ed Eg 

0 1 1.0 .0750476 .011-6301 .0285848 

1 1 .077863 .027508 .0024793 .0011684 

2 2 .040498 .016655 .0010333 .00026056 

3 6 .027298 .01192 .00056145 9.5981E-5 

4 24 .020576 .0092757 .00035165 4.5374E 5 

5 120 .016507 .00759 .00024064 2.4914E-5 

6 720 .01378 .006422 .00017492 1.5115E-5 

7 5040 .011826 .0055653 .00013284 9.8486E-6 

8 40320 .010357 .00491 .0001043 6.7697E 6 

9 3.6288E5 .0092128 .0043928 8.4052E 5 4.8512E 6 

10 3.6288E6 .008296 .003974 6.9174E-5 3.5941E 6 

15 1.3077E12 .0055393 .0026911 3.2266E 5 1.1182E76 

20 2.4329E18 .0041577 .0020343 1.86E-5 4.8339E-7 

25 1.5511E25 .0033276 .0016352 1.2082E 5 2.5101E17 

30 2.6525E32 .0027738 .001367 8.4737E16 1.4678E-7 

35 1.0333E40 .0023781 .0011743 6.2696E16 9.3471E18 

40 8.1592E47 .0020811 .0010293 4.8262E76 6.2658E 8 

45 1.1962E56 .0018501 .00091614 3.8289E 6 4.4519E 8 

50 3.0414E64 .0016653 .0008254 3.1121E-6 3.2295-1 8 
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